На информационном ресурсе применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации)

Жизнь - театр

1 170 подписчиков

Свежие комментарии

  • Виктор Александров
    Дорогая Света! Именно так и строят: «здание отдельно, а взлетную полосу отдельно»! Пассажиры в самолёты попадают либо...Прогулки по Санкт...
  • Светлана Митленко
    Ну извините, Виктор Александров.Роскошь Питера
  • Светлана Митленко
    Творческий человек ведь не  только создает руками. А как например быть с композиторами? Как с писателями? Они же не р...Иллюзорные галакт...

Разумные растения. Взгляд науки

Фото: Tim | pixelbalztanz / FlickrЗачем растениям нужны нервные импульсы. Вековые дубы, сочная травка, свежие овощи — мы как-то не привыкли считать растениями живыми существами, и совершенно зря. Эксперименты показывают, что растения обладают неким сложным аналогом нервной системы и точно так же, как и животные, способны принимать решения, хранить воспоминания, общаться и даже дарить друг другу подарки. Подробнее разобраться в электрофизиологии растений помог профессор Оквудского университета Александр Волков.
Мыслящий тростник. Разумные растения. Взгляд наукиЖурналист: Я никогда не подумал бы, что кто-то занимается электрофизиологией растений, пока не наткнулся на ваши статьи.

Александр Волков: Вы не одиноки. Широкая публика привыкла воспринимать растения как еду или элементы ландшафта, даже не понимая, что они живые. Когда-то я делал в Хельсинки доклад по электрофизиологии растений, и тогда коллеги очень удивились: «Раньше занимался серьезной темой — несмешиваемыми жидкостями, а теперь какими-то фруктами, овощами». Но так было не всегда: первые книги по электрофизиологии растений были опубликованы еще в XVIII веке, и тогда изучение животных и растений шло почти параллельными путями. К примеру, Дарвин был уверен, что корень — это своеобразный мозг, химический компьютер, обрабатывающий сигналы со всего растения (см., например, «Способность к движению у растений»). А потом наступила Первая мировая война и все ресурсы были брошены на изучение электрофизиологии животных, потому что людям нужны были новые лекарства.

Ж: Это выглядит логичным: лабораторные мыши все-таки гораздо ближе к людям, чем фиалки.

А.В: В действительности различия между растениями и животными совсем не такие громадные, а в электрофизиологии они вообще минимальные. У растений есть почти полный аналог нейрона — проводящая ткань флоэма. У нее тот же самый состав, те же размеры и функции, что у нейронов. Единственное отличие, что у животных в нейронах для передачи потенциалов действия используются натриевый и калиевые ионные каналы, а в флоэме растений — хлоридный и калиевый. Вот и вся разница в нейрофизиологии. Немцы недавно нашли химические синапсы у растений, мы — электрические, и в целом у растений работают те же нейротрансмиттеры, что и у животных. Мне кажется, это даже логично: если бы я создавал мир, а я человек ленивый, я бы сделал все одинаковым, чтобы все было совместимо.Мыслящий тростник. Разумные растения. Взгляд наукиДарвин считал корни растений своеобразным аналогом головного мозга. Фото: Ammak / Фотодом / Shutterstock

Ж: Зачем растениям нервные импульсы?

Мы не задумываемся об этом, но растения в своей жизни обрабатывают даже больше типов сигналов от внешней среды, чем люди или любые другие животные. Они реагируют на свет, тепло, гравитацию, солевой состав почвы, магнитное поле, различные патогены и гибко меняют свое поведение под действием полученной информации. К примеру, в лаборатории Стефано Манкузо (Stefano Mancuso) из Университета Флоренции проводили эксперименты с двумя вьющимися побегами фасоли. Ученые устанавливали между растениями общую опору, и побеги начинали наперегонки к ней тянуться. Но как только первое растение забиралось на опору, второе сразу будто признавало себя побежденным и переставало расти в этом направлении. Оно понимало, что борьба за ресурсы бессмысленна и лучше искать счастье где-нибудь в другом месте.

Ж: Растения не двигаются, медленно растут и вообще живут неторопливо. Кажется, что нервные импульсы у них должны распространяться тоже гораздо медленнее.

Александр Волков: Это заблуждение, которое долго бытовало в науке. В 70-х годах XIX века англичане померили, что потенциал действия у венериной мухоловки распространяется со скоростью 20 сантиметров в секунду, но это была ошибка. Они были биологами и совершенно не владели техникой электроизмерений: в своих экспериментах англичане использовали медленные вольтметры, которые регистрировали нервные импульсы даже медленнее, чем они распространялись, что совершенно недопустимо. Теперь мы знаем, что нервные импульсы могут бежать по растениям с самыми разными скоростями в зависимости от места возбуждения сигнала и от его природы. Максимальная скорость распространения потенциалов действия у растений сравнима с такими же показателями у животных, а время релаксации после прохождения потенциала действия может меняться от миллисекунд до нескольких секунд.

Ж: Для чего растения используют эти нервные импульсы?

А.В: Хрестоматийный пример — это венерина мухоловка, о которой я уже упомянул. Эти растения живут в районах с очень влажной почвой, в которую плохо проникает воздух, и, соответственно, в этой почве мало азота. Недостаток этого необходимого вещества мухоловки добирают, поедая насекомых и маленьких лягушек, которых они ловят с помощью электрической ловушки — двух лепестков, в каждый из которых встроено по три пьезомеханических сенсора. Когда насекомое садится на любой из лепестков и задевает своей лапкой эти рецепторы, в них генерируется потенциал действия. Если насекомое задевает механосенсор дважды в течение 30 секунд, то ловушка захлопывается за доли секунды. Мы проверяли работу этой системы — прикладывали к ловушке венериной мухоловки искусственный электрический сигнал, и все работало точно так же — ловушка закрывалась. Потом мы повторили эти эксперименты с мимозой и другими растениями и так показали, что можно за счет электрических сигналов заставлять растения открываться, закрываться, двигаться, нагибаться — в общем, делать все что угодно. При этом внешние возбуждения разной природы генерируют у растений потенциалы действия, которые могут различаться амплитудой, скоростью и продолжительностью.

Ж: На что еще могут реагировать растения?

А.В: Если вы подстрижете травку у себя на даче, то в корни растений сразу пойдут потенциалы действия. По ним запустится экспрессия некоторых генов, и на порезах активируется синтез перекиси водорода, защищающей растения от инфекции. Точно так же если вы измените направление света, то первые 100 секунд растение никак не будет на это реагировать, для того чтобы отсечь вариант тени от птицы или животного, а потом снова пойдут электрические сигналы, по которым растение за секунды повернется таким образом, чтобы максимально захватить световой поток. Все то же самое будет, и когда вы станете капать кипящей водой, и когда поднесете горящую зажигалку, и когда опустите растение в лед — на любые раздражители растения реагируют с помощью электрических сигналов, которые управляют их ответами на изменившиеся условия внешней среды.Мыслящий тростник. Разумные растения. Взгляд наукиВенерина мухоловка ловит свою добычу с помощью нервных импульсов, возбуждаемых механосенсорами. Фото: Mark Freeth / Flickr

Память растений

Растения не только умеют реагировать на внешнюю среду и, по-видимому, просчитывать свои действия, но еще и завязывают между собой некоторые социальные отношения. Например, наблюдения немецкого лесничего Петера Воллебена показывают, что у деревьев бывает нечто вроде дружбы: деревья-партнеры переплетаются корнями и внимательно следят за тем, чтобы их кроны не мешали друг другу расти, в то время как случайные деревья, не питающие никаких особых чувств к своим соседям, всегда стараются захватить себе побольше жизненного пространства. При этом дружба может возникать и между деревьями разных видов. Так, в опытах того же Манкузо ученые наблюдали, как незадолго до смерти дугласия будто оставляет наследство: желтой сосне неподалеку от нее дерево посылало по корневой системе большое количество органических веществ.

Ж: У растений есть память?

Александр Волков: У растений есть все те же виды памяти, что и у животных. Например, мы показали, что памятью обладает венерина мухоловка: чтобы ловушка сработала, на нее нужно отправить 10 микрокулонов электричества, но, оказывается, это не обязательно делать за один сеанс. Можно сначала подать два микрокулона, потом еще пять и так далее. Когда в сумме наберется 10, растению покажется, что в него попало насекомое, и оно захлопнется. Единственное, что между сеансами нельзя делать перерывы больше, чем в 40 секунд, иначе счетчик обнулится — получается такая краткосрочная память. А долгосрочную память растений увидеть еще проще: например, у нас одной весной на 30 апреля ударили заморозки, и буквально за одну ночь на инжирном дереве померзли все цветы, а в следующем году оно уже не расцветало до первого мая, потому что помнило, чем это закончилось. Похожих наблюдений физиологами растений было сделано немало за последние 50 лет.

Ж: Где хранится память растений?

А.В: Однажды я встретил на конференции на Канарских островах Леона Чуа, который в свое время предсказал существование мемристоров — сопротивлений с памятью о прошедшем токе. Мы разговорились: Чуа почти ничего не знал о ионных каналах и электрофизиологии растений, я — о мемристорах. В результате он попросил, чтобы я попробовал поискать мемристоры in vivo, потому что по его расчетам они должны быть сопряжены с памятью, но до сих пор в живых существах их никто не находил. У нас же все получилось: мы показали, что потенциал-зависимые калиевые каналы алоэ вера, мимозы и той же венериной мухоловки — это по природе своей мемристоры, а в следующих работах мемристивные свойства нашли в яблоках, картофеле, семенах тыквы, разных цветах. Вполне возможно, что память растений завязана именно на этих мемристорах, но точно пока это неизвестно.

Ж: Растения умеют принимать решения, обладают памятью. Следующий шаг — социальные взаимодействия. Могут ли растения общаться друг с другом?

А.В: Знаете, в «Аватаре» есть такой эпизод, где деревья общаются между собой под землей. Это не фантазия, как можно подумать, а установленный факт. Когда я жил в СССР, мы часто ходили за грибами и все знали, что гриб надо аккуратно срезать ножичком, чтобы не повредить грибницу. Теперь выясняется, что грибница — это электрический кабель, по которому деревья могут общаться как между собой, так и с грибами. Более того, есть множество свидетельств, что по грибнице деревья обмениваются не только электрическими сигналами, но еще и химическими соединениями или даже опасными вирусами и бактериями.

Ж: А что вы скажете по поводу мифа о том, что растения понимают человеческую речь, и поэтому с ними надо говорить ласково и спокойно, чтобы они лучше росли?

А.В: Это только миф, больше ничего.

Ж: Можем ли мы применять к растениям термины «боль», «мысли», «сознание»?

А.В: Об этом я ничего не знаю. Это уже вопросы философии. Прошлым летом в Петербурге был симпозиум по сигналам в растениях, и туда приехало сразу несколько философов из разных стран, так что этой темой сейчас начинают заниматься. Но я привык говорить о том, что я могу экспериментально проверить или рассчитать.Мыслящий тростник. Разумные растения. Взгляд наукиВ семенах тыквы ученые нашли аналоги мемристоров — резисторов, обладающих памятью. Фото: Shawn Campbell / Flickr

Растения как сенсоры

Растения умеют координировать свои действия с помощью разветвленных сетей. Так, акация, произрастающая в африканской саванне, не только выделяет в свои листья токсическое вещество, когда ее начинают есть жирафы, но еще и испускает летучий «тревожный газ», передающий сигнал бедствия окружающим растениям. В результате жирафам в поисках пищи приходится перемещаться не к ближайшим деревьям, а отходить от них в среднем на 350 метров. Сегодня ученые мечтают использовать подобные отлаженные природой сети живых сенсоров для экологического мониторинга и других задач.

Ж: Вы пробовали использовать ваши исследования по электрофизиологии растений на практике?

Александр Волков: У меня есть патенты по предсказанию и регистрации землетрясений с помощью растений. В преддверии землетрясений (в разных частях света временной интервал меняется от двух до семи суток) движение земной коры вызывает характерные электромагнитные поля. В свое время японцы предлагали их фиксировать с помощью гигантских антенн — железок высотой два километра, но никто такие антенны так и не смог построить, да это и не нужно. Растения настолько чувствительны к электромагнитным полям, что могут предсказывать землетрясения лучше любых антенн. Например, мы использовали для этих целей алоэ веру — подключали к ее листьями хлорсеребряные электроды, снимали электрическую активность, обрабатывали данные.

Ж: Звучит абсолютно фантастически. Почему эта система до сих пор не внедрена в практику?

А.В: Здесь возникла неожиданная проблема. Смотрите: допустим, вы мэр Сан-Франциско и узнаете, что через два дня будет землетрясение. Что вы будете делать? Если вы сообщите об этом людям, то в результате паники и давки может погибнуть или получить травмы даже больше людей, чем при землетрясении. Из-за таких ограничений я даже публично в открытой печати не могу обсуждать результаты наших работ. В любом случае, я думаю, рано или поздно у нас будут самые разные системы мониторинга, работающие на растениях-сенсорах. Например, мы в одной своей работе показали, что с помощью анализа электрофизиологических сигналов можно создать систему мгновенной диагностики различных заболеваний сельскохозяйственных растений.Мыслящий тростник. Разумные растения. Взгляд наукиУченые предлагают предсказывать землетрясения по электрическим сигналам в листьях алоэ вера. Фото: rabiem22 / Flickr

Автор: Михаил Петров

http://chrdk.ru/sci/un_roseau_pensant

Практическая философия деревьев: на каком языке они общаются и чем похожи на людей Деревья появились на Земле раньше человека, но их не принято воспринимать как живые существа. В своей книге «Тайная жизнь деревьев: поразительная наука о том, что деревья чувствуют и как они взаимодействуют» немецкий лесничий Петер Воллебен рассказывает, как он заметил, что деревья общаются между собой, передают информацию с помощью запаха, вкуса и электрических импульсов, и как сам научился распознавать их беззвучный язык.

Он рассказывает:
- «Жизнь лесника снова стала захватывающей. Каждый день в лесу был днем открытия. Это привело меня к необычным методам управления лесом. Когда вы знаете, что деревья испытывают боль и имеют память, а родители у них живут вместе со своими детьми, вы не можете больше просто срезать их, обрывать жизнь своей машиной».

Откровение приходило к нему вспышками, особенно во время регулярных прогулок по той части леса, где рос старый бук. Однажды, проходя мимо груды камней, покрытых мхом, которые раньше он видел множество раз, Воллебен вдруг осознал, насколько они своеобразны. Наклонившись, он сделал потрясающее открытие:
- «Камни были необычной формы, как бы изогнуты вокруг чего-то. Я аккуратно приподнял мох на одном камне и обнаружил кору дерева. То есть это вообще были не камни — это было старое дерево. Я был удивлен, насколько «камень» был твердый, — обычно во влажной почве буковое дерево разлагается за несколько лет. Но больше всего меня поразило, что я не смог поднять его.

Оно было будто прикреплено к земле. Я достал карманный нож и стал аккуратно срезать кору, пока не добрался до зеленоватого слоя. Зеленый? Этот цвет встречается лишь в хлорофилле, из-за которого листья вырастают зелеными; резервы хлорофилла также содержатся в стволах живых деревьев. Это могло значить только одно: этот кусочек дерева был все еще жив! Внезапно я заметил, что оставшиеся «камни» лежат определенным образом: они составляли круг диаметром 5 футов. То есть я наткнулся на искривленные остатки огромного древнего пня. Внутренняя часть давно полностью сгнила — ясный признак того, что дерево, должно быть, рухнуло по крайней мере 400 или 500 лет назад».

Как дерево, срубленное столетия назад, могло до сих пор жить? Без листьев дерево не может осуществлять фотосинтез, то есть не может превращать солнечный свет в питательные вещества. Это древнее дерево получало их каким-то иным образом — и сотни лет!
Тайну раскрыли ученые. Они выяснили, что соседние деревья помогают другим через корневую систему либо напрямую, переплетая корни, либо косвенно — создают между собой вокруг корней как бы грибницу, которая служит своего рода расширенной нервной системой, соединяя далеко стоящие деревья. Кроме того, деревья при этом проявляют способность различать корни деревьев других видов.

Воллебен сравнил эту умную систему с тем, что происходит в человеческом обществе:
- «Почему деревья — настолько социальные существа? Почему они делятся едой с представителями своего вида, а иногда даже идут дальше, чтобы накормить соперников? Причина та же, что и в человеческом сообществе: быть вместе — это преимущество. Дерево — это не лес. Дерево не может установить свой местный климат — он находится в распоряжении ветра и погоды. Но вместе деревья образуют экосистему, которая регулирует жару и холод, сохраняет большой запас воды и генерирует влажность. В таких условиях деревья могут жить очень долго. Если бы каждое дерево заботилось только о себе, часть из них никогда бы не дожила до преклонного возраста. Тогда в шторм ветру было бы легче пробраться внутрь леса и повредить множество деревьев. Солнечные лучи достигли бы земного покрова и высушили его. В результате страдало бы каждое дерево.
Таким образом, для сообщества важно каждое дерево, и каждому лучше продлить жизнь настолько, насколько это возможно. Поэтому даже больные, пока не восстановятся, поддерживаются и подкармливаются остальными. В другой раз, возможно, все изменится, и в помощи будет нуждаться то дерево, которое сейчас поддерживает других. […]

Дерево может быть настолько сильным, насколько силен лес вокруг него».
Кто-то может спросить, не приспособлены ли деревья к взаимопомощи лучше, чем мы, потому что наши жизни измеряются разными по масштабу временными отрезками. Можно ли нашу неспособность увидеть полную картину взаимной поддержки в человеческом сообществе объяснить биологической близорукостью? Может быть, организмы, жизнь которых измеряется другими масштабами, лучше приспособлены существовать в этой грандиозной в вселенной, где все глубоко взаимосвязано?

Без сомнения, даже деревья поддерживают друг друга в разной степени. Воллебен объясняет:
«Каждое дерево — член сообщества, но в нем есть разные уровни. Например, большинство пней начинают гнить и исчезают за пару сотен лет (что немного для дерева). И только некоторые остаются живы веками. В чем же разница? Есть ли у деревьев население «второго сорта», как в человеческом обществе? Видимо, да, но понятие «сорт» не совсем подходит. Это скорее степень связи — или, возможно, привязанности, — которая определяет, насколько готовы помочь дереву его соседи».

Эти взаимоотношения можно заметить и по верхушкам деревьев, если присмотреться:
«Обычное дерево простирает свои ветви, пока они не дотянутся до ветвей соседнего дерева такой же высоты. Дальше ветви не растут, потому что иначе им не хватит воздуха и света. Может сложиться впечатление, что они толкают друг друга. Но пара «товарищей» этого не делает. Деревья ничего не хотят отнимать друг у друга, они простирают ветви до краев кроны друг друга и в направлении тех, кто не является их «друзьями». Такие партнеры часто так тесно связаны у корней, что иногда они и умирают вместе».© DCorn / iStock

Но деревья не взаимодействуют друг с другом вне экосистемы. Они часто оказываются связаны и с представителями других видов. Воллебен так описывает их обонятельную систему предупреждения:
- «Четыре десятилетия назад ученые заметили, что жирафы в африканской саванне кормятся зонтичной колючей акацией. И деревьям это не нравилось. За несколько минут акации начинали выделять в листья токсическое вещество, чтобы избавиться от травоядных. Жирафы это понимали и переходили к другим деревьям поблизости. Но не к ближайшим — в поисках пищи они отходили примерно на 100 ярдов.

Причина этого поразительна. Акации, когда их поедали жирафы, выпускали особый «тревожный газ», который был сигналом об опасности для соседей того же вида. Те, в свою очередь, тоже начинали выпускать токсическое вещество в листву, чтобы подготовиться к встрече. Жирафы были уже в курсе этой игры и отходили в ту часть саванны, где можно было найти деревья, до которых новости еще не дошли.[…]».

Поскольку век дерева гораздо больше человеческого, у них все происходит куда медленнее. Воллебен пишет:
- «Буки, ели и дубы ощущают боль сразу, как только кто-то начинает их грызть. Когда гусеница откусывает кусочек листа, ткань вокруг поврежденного участка изменяется. Кроме того, ткань листа посылает электрические сигналы, как и ткань человека, если она болит. Но сигнал не передается за миллисекунды, как у человека — он движется гораздо медленнее, со скоростью треть дюйма в минуту. Так что пройдет час или больше, пока защитные вещества будут доставлены к листьям, чтобы отравить еду вредителю. Деревья проживают свою жизнь очень медленно, даже если они в опасности. Но это не значит, что дерево не осознает, что происходит с разными его частями. Например, если корням что-то угрожает, информация распространяется через все дерево, а листья в ответ посылают пахучие вещества. И не какие-то старые, а специальные компоненты, которые они немедленно вырабатывают для этой цели».

Положительная сторона такой медлительности в том, что не надо поднимать общую тревогу. Скорость компенсируется точностью подаваемых сигналов. Помимо запаха деревья используют вкус: каждая разновидность производит определенный вид «слюны», которая может быть насыщена и феромонами, нацеленными на то, чтобы отпугнуть хищника.

Чтобы показать, насколько важную роль деревья играют в экосистеме Земли, Воллебен рассказал историю, которая произошла в Национальном парке Йеллоустоун — первом в мире национальном парке.
- «Все началось с волков. Волки исчезли из парка Йеллоустоун в 1920-е годы. С их исчезновением изменилась вся экосистема. Увеличилось число лосей, и они начали поедать осины, ивы и тополя. Снизилась растительность, и животные, которые зависели от этих деревьев, тоже стали исчезать. Волков не было 70 лет. Когда они вернулись, жизнь лосей перестала быть томной. Когда волки заставили стада передвигаться, деревья снова стали расти. Корни ив и тополей укрепили берега ручьев, и их течение замедлилось. Это, в свою очередь, создало условия для возвращения некоторых животных, в частности бобров — они теперь могли найти необходимые материалы, чтобы строить свои хатки и заводить семьи. Животные, чья жизнь связана с прибрежными лугами, тоже вернулись. Оказалось, что волки управляют хозяйством лучше, чем люди […]».

https://theoryandpractice.ru/posts/15435-prakticheskaya-filo...

Все чаще ученые приходят к выводу, что растения - существа мыслящие. Расскажу еще одну историю.Метод Бакстера

Бум в изучении необычайных свойств растений, делающих их похожими не просто на живые, а и на мыслящие существа, связан с именем Клифа Бакстера - специалиста по детекторам лжи. Однажды, чтобы скоротать время, он захотел посмотреть: испытывают ли растения какие-нибудь реакции на внешнее воздействие? Работая с детектором лжи, Бакстер знал, что угроза - это хороший способ выявить сильную реакцию субъекта. Поэтому он присоединил растение к детектору и окунул его лист в горячий кофе.

Никакой реакции не последовало. Тогда он решил, что куда более страшен для растения огонь. С этой мыслью он пошел за спичками. И тут кривая на графике, которую писал самописец, быстро поползла вверх. Когда Бакстер вернулся со спичками, то увидел, что на кривой появился ещё один пик. Было похоже, что растение «догадалось» о его намерениях и испугалось. Ученый провел еще несколько опытов, и оказалось, что когда он проявлял сомнение, нерешительность или нежелание поджечь растение, то реакция, записанная детектором лжи, была не столь резкой. Когда же Бакстер только притворялся, что собирается поджечь листья, растение почти никак не реагировало.

В следующих опытах ученый сделал еще несколько невероятных с точки зрения здравого смысла, открытий. Оказывается, что даже сорванные и разрезанные на куски листья после подсоединения к детектору дают ту же реакцию, что и само растение. Выяснилось также, что растение от угроз или появления чрезвычайно опасного для него человека способно «падать» в самый настоящий обморок или испытывать шок.

Как-то лабораторию Бакстера посетил один канадский физиолог. Он попросил показать ему сенсационные опыты. К его удивлению, ни одно из пяти растений, к которым были присоединены датчики, никак не прореагировало на его угрозы. Бакстер стал расспрашивать канадца, как он обращается с растениями в собственной лаборатории, не наносит ли им каких-либо повреждений и увечий, и узнал, что физиолог сжигает их в лабораторной печке для определения сухого веса. Получается, что растения признали в нем злодея и впали от переполнивших их чувств в шоковое состояние. Нормальную реакцию на опыты они стали демонстрировать только тогда, когда «ужасный» посетитель удалился.

Приборы, записывающие реакцию растений, позволили выявить еще одно их удивительное свойство. Оказывается, растения могут на большом расстоянии реагировать на поведение человека, который ухаживал за ними. Так, например, когда Бакстер вернулся в Нью-Йорк из Нью-Джерси, он с удивлением обнаружил на графиках, сделанных самописцем, что все растения почувствовали его «отбытие» из города и «приветствовали» его возвращение. Причем момент начала реакции совпал с тем моментом времени, когда исследователь принял решение вернуться домой.

Когда практически по всем странам прошла информация о необычных, «эмоциональных» реакциях растений, обнаруженных Клифом Бакстером, сразу же стали вспоминать о похожих случаях.

Цветы-телепаты

В конце ХХ века очень интересные исследования, подтверждающие способность растений воспринимать мысли человека и реагировать на них, были проведены профессором Института общей и педагогической психологии Вениамином Пушкиным. Сделанные им более 200 опытов неопровержимо свидетельствовали: в ответ на изменение эмоционального состояния человека меняется и электрический потенциал растения.

Вот описание одного из таких опытов. В кресло рядом с растением садилась студентка - оказалось, что эмоциональные девушки быстрее всего устанавливали контакт с бегонией. Гипнотизер вводил девушку в транс и внушал ей мысли, вызывавшие у растения положительные или отрицательные эмоции. Например, гипнотизер говорил, что погода неожиданно испортилась: стало холодно, с неба полетели хлопья снега. Девушка начинала дрожать от холода. От нее эмоции передавались растению, и на ленте самописца появлялись характерные всплески. Когда же погода под воздействием гипнотизера улучшалась, самописец чертил на ленте прямую линию. Если же гипнотизер внушал девушке кощунственную мысль - сорвать цветок, то растение, судя по кривой самописца, приходило в настоящий ужас. По мнению ученого, схожесть реакции человека и растения обусловлена тем, что жизнь на Земле когда-то образовалась из одной клетки, ставшей предком и человека, и растения. И ДНК всего живого на Земле несет поэтому сходство со своим далеким прародителем.

Опыты Бакстера, Пушкина, других ученых, занимавшихся изучением этой проблемы, позволили сделать еще одно очень важное открытие: растения, по-видимому, обмениваются сигналами. У них существует свой язык, подобный примитивному языку насекомых. Эксперименты, проведенные на кафедре физиологии растений Тимирязевской сельскохозяйственной академии под руководством профессора Ивара Гунара, позволили выявить, что одно растение, меняя электрические потенциалы в своих листьях, посылает другому сообщения об опасности. Удалось даже найти центр, откуда они исходят. «Этот центр находится на шейке корня, - писал профессор, - который сжимается и разжимается, как сердечная мышца. Растения, по-видимому, умеют обмениваться сигналами, и у них существует свой сигнальный язык, подобно языку примитивных животных, например насекомых. Одно растение, меняя электрические потенциалы на своих листьях, может сообщать другому об опасности. Словом, - заключал Гунар, - если не считать прикованности растений к своему месту, нет никакой разницы между ними и животными».

Получается, что растения общаются между собой с помощью своеобразного радиотелеграфа. О его существовании, кстати, давно подозревали лесорубы, замечавшие, что при рубке дерева листья других деревьев той же породы начинали трепетать.

Исследователи попытались разработать и подтвердить гипотезу, объясняющую механизм сигнализации растений. Молекулярный биолог Кларенс Райян из университета штата Вашингтон установил, что как только гусеница начинает есть лист на помидорном кусте, остальные листья тотчас же начинают вырабатывать протаиназу - ингибитор, который связывает у гусениц пищеварительные ферменты, тем самым затрудняя, а то и делая невозможным усвоение ими пищи. Затем были найдены и каналы, по которым идут сигналы тревоги - своеобразные щели в мембранах растительных клеток. Называются они плазмодезматами. Оказалось, что растения общаются между собой с помощью своеобразной ионной сигнализации и что она присуща не только растениям, но и многим животным, обладающим развитой нервной системой. «Зачем она им нужна? - задали себе вопрос ученые. - Возможно, это просто рудиментарный остаток от тех времен, когда их нервная система была еще в зачаточном состоянии. А может быть, и поныне она несет функцию приемника, настроенного на сигналы чужой беды».

Это подтверждают опыты, проведенные Бакстером. Когда морская креветка автоматическим механизмом, не требующим человеческого вмешательства, сбрасывалась в кипящую воду, самописцы, присоединенные к растениям, отражали их сильную реакцию на сигналы гибели.

Мы с тобой одной крови!

Природа сделала нас всех из одного материала, и развивались мы по одним законам. Вполне вероятно, что во всех нас, в каждой живой клетке, существующей на Земле, где-то глубоко скрыт механизм взаимопомощи. Без этого механизма возникшая на нашей планете жизнь не смогла бы сохраниться и быстро бы погибла.

Помните, что говорил Маугли, герой повести Р.Киплинга, при встречах с животными? Чтобы не допустить вражду, которая могла привести к гибели, или получить помощь, достаточно было крикнуть: «Мы с тобой одной крови. Ты и я!» Может быть, аналогичным образом стоит вести себя со всем животным и растительным миром? Не бросаться на живое дерево с топором, а помнить, что мы все произошли из одной клетки.

Картина дня

наверх